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Abstract

A detailed knowledge about the physics and chemistry of multiphase materials on different length and time scales is essential to tailor their
macroscopic physical and mechanical properties. A better understanding of these issues is also highly relevant to optimize their processing and,
thus, their elucidation can be decisive for their final industrial application. In this paper, we develop a new multiscale modeling method, which
combines the self-consistent field theory approach with the kinetic Monte Carlo method, to simulate the structural—dynamical evolution taking
place in thermoplastic elastomers, where hard glassy and soft rubbery phases alternate. Since the early seventies, it is well established that the
properties of the core nanophases in these multiphase materials considerably affect their overall mechanical properties. However, recent
experimental studies have clearly demonstrated that, besides the efficient handling of the core nanophases, the appropriate treatment of their
interfacial region is another major challenge one has to face on the way of target-oriented development of these materials. In this work, we set
a particular focus on the complex structural—dynamical processes occurring at the interphases, and study their influence on the local structural
and mechanical properties. To reach our objectives, we apply the new methodology on a thermoplastic elastomer composed of ABA triblock
copolymers, subjected to a sizeable external perturbation, and determine its time-averaged internal stress and composition profile. We deduce
from this investigation that, to obtain the correct local mechanical properties of these multiphase materials, their structure and dynamics
need to be taken into account on an equal footing. Finally, our investigation also provides an explanation and confirms the importance of
the chain-pullout mechanism in the viscoelastic and stress relaxation behavior of these materials.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction for predicting structure and physical properties of polymer-
based nanomaterials, like e.g. particulate filled polymer,

A long-standing challenge of physical, chemical and  polymer blends, nanostructured block copolymers, from the
engineering sciences has been to develop theoretical tools knowledge of a few input parameters. The need for such pre-
dictions has lately become increasingly important as new high-

performance catalysts are now available that can produce
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several promising theoretical approaches have been devised
recently that can open new perspectives for many new techno-
logical innovations [5—7]. However, despite these efforts,
progress in the prediction of macroscopic physical properties
from structure has only been slow in the past [8,9]. Major dif-
ficulties relate to the fact that (a) the microstructural elements
in multiphase material are not shaped or oriented as in the ide-
alizations of computer simulations, and more than one type
can coexist [8]; (b) nonlinear properties damage the nano-
structure, which leads to an uncharacterized new morphology
that can change with time as further deformation and/or
healing does occur [8]; (c) multiple length and time scales
are generally involved and must be taken into account, when
overall thermodynamic and mechanical properties wish to be
determined [10]; and finally (d) the effect of the interphases
and/or interfaces on the physical properties is often not well
understood and characterized [11]. As a consequence, their
role is often neglected in the development of new theoretical
tools or they are treated in a very empirical way [12]. In
this work, we focus on the understanding and efficient treat-
ment of the latter two issues.

Some indications about the importance of interphases or in-
terfaces in polymer-based nanomaterials have already been
obtained through various experimental studies involving spec-
troscopic or mechanical measurements. From these investiga-
tions, it has been inferred that the impact of the interfacial
regions on the overall mechanical properties becomes increas-
ingly important with increasing mechanical perturbation
imposed on the system. Such conclusions have, for example,
been drawn by Diamant et al. [8] from tensile tests on
thermoplastic elastomers (TPEs) composed of various phase-
separated styrenic block copolymers. From the test results,
these authors deduced that the linear or nonlinear mechanical
perturbation leads to a stress concentration localized in the in-
terfacial region between hard and soft nanophases. Moreover,
they found that, if the interphase is diffuse with a small com-
position gradient, the domains are not in register and they fail
individually, which explains that macroscopic yielding cannot
be observed in this regime. In contrast, if the composition pro-
file has a sharp gradient, high local stress concentrations are
generated at the interphases, which causes that under a nonlin-
ear strain all domains fail together in a cascade. In a later
study, Henderson and Williams analyzed the issue of compo-
sition profiles at block copolymer interphases using experi-
mental and theoretical approaches [13]. They showed that
microphase-separated block copolymers generally possess
asymmetric interphase regions, which are enriched by one of
the components. Morese-Séguéla et al. [14] deduced from
their DSC- and '>C NMR-line-width measurements on low
molecular weight polystyrene—polyisoprene diblock copoly-
mers that at the interphases there are indications for strong dy-
namical interactions between the chains in the soft and hard
nanophases. They deduced that these interactions are responsi-
ble for the abnormal decrease of the glass-transition tempera-
ture, T, at the interphases, rather than a mixing of the two
components assumed in previous works [15]. In a later
work, Stoppelmann et al. [16] have shown evidences for an

asymmetric density and motional profile of the chain segments
at the interphases using “H-nuclear-magnetic-resonance spec-
troscopy. Very recently, Huy et al. [17] proposed that the inter-
phases of tapered block copolymers can act as stress
absorbers, which allow a more uniform stress distribution.
All these experimental works indicate that the segmental
structural dynamics, taking place at the interphases, is an
important issue and its consequences on the macroscopic
physical properties needs to be better understood.

In this work we investigate the complex structural—dynam-
ical behavior of the chain segments involved in the interfacial
region of TPE materials, composed of phase-separated styr-
enic triblock copolymers, and study its influence on the local
mechanical properties. These multiphase materials are com-
posed of triblock copolymer chains, where hard segments,
made of polystyrene (PS), are chemically connected to soft
segments, made of polyisoprene (PI) or polybutadiene (PB)
[5,18]. For high molecular weights and below the order—
disorder transition temperature, they phase-separate by forming
a transient network of glass—rubber phases, where soft
domains rich of either PB or PI and hard domains rich of PS
alternate. Due to their exceptional strength and elasticity, these
materials can be employed as high-performance elastomers and
engineered to enhance the performance capabilities of a wide
spectrum of end products and applications. To simulate their
structural—dynamical evolution, we develop and apply a new
multiscale modeling procedure based on the combination of
the self-consistent-field theory (SCFT) approach and kinetic
Monte Carlo (KMC) method, which is capable to treat the
multiscale problem adequately and is able to reproduce the
chain-dynamical processes occurring at the interphases.

Our paper is organized as follows. In Section 2.1 we intro-
duce the model, describing the structural—dynamical process
acting at the interphases of TPE materials, and discuss its re-
lation to the glass model developed in one of our previous
works [19]. Both pictures constitute the theoretical basis of
our multiscale modeling approach. In Section 2.2 we describe
how to modify the standard SCFT procedure, to mimic the
characteristic glass phenomenon of dynamical arrest in the
glassy phases on the chain level of description, while in
Section 2.3 we introduce the KMC methodology and discuss
how to compute the transition rates of the structural—
dynamical process on the fly. In Section 2.4 we formulate
our new multiscale modeling approach, which combines the
previously introduced SCFT approach with the KMC algo-
rithm. In Section 3 we demonstrate the suitability of our
new algorithm for describing the structural—dynamical pro-
cesses involved at the interphases of TPE materials. Finally,
we end our paper with conclusions and a brief outlook.

2. Method
2.1. Structural—dynamical model
It is well established, since several decades, that a glassy

polymer is the frozen state of an overcooled melt [20], in which
the monomers are essentially trapped exhibiting a so-called
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dynamical arrest [21]. In order to model a polymer in such
a glassy state within the SCFT formalism, a simple solution
is to freeze certain regions by keeping the monomers densities
fixed in these regions and relax the chain configuration in the
unconstrained rubbery phase by minimizing the overall free
energy. Through the freezing procedure in the glassy phase,
a new length and time scale is introduced into the system.
For a more detailed discussion on the so-called *“‘frozen do-
mains”’-SCFT (FD-SCFT) method we refer to Section 2.2
and Appendix A. In a subsequent step, we calculate the inter-
nal elastic stress sustained by the polymer chains, using the
Cauchy stress tensor formulation of Barrat et al. [22,23]. In
polymeric liquids, the internal elastic stress is attributed to
the intermolecular force between the polymer segments and
is directly related to the orientation of the bond vectors [24].
To test the usefulness of this procedure, we apply our FD-
SCFT method on a lamellar system of ABA triblock copoly-
mers with alternating glass—rubber phases, subjected to an
extensional strain of 8.3%. For the calculation, we use average
volume fractions for the A and B monomers of @A‘B = 0.5,
a Flory—Huggins parameter of x =0.2 and a polymerization
index of N =100, as well as a lattice spacing of dx=0.1 in
units of Rg. In Fig. 1 we plot the internal stress of the
glass—rubber system as a function of the grid number obtained
from the calculation with our FD-SCFT method, in compari-
son to the internal stress and volume fractions of the A and
B monomers obtained for the corresponding melt-like (rubber)
system using the standard SCFT approach [25]. In our calcu-
lation, we have designated the areas on left- and right-hand
side of the graph as pertaining to the melt-like phase, which
is separated from the central glassy phase by broken lines.
By considering the stress profile of the glass—rubber system,
we observe that stress singularities appear at both sides of
the glass—rubber interfaces and that they are in balance to
each other. The singularities are due to the constrained align-
ment of the interfacial chain segments under the action of
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Fig. 1. Internal stress and volume fractions of the monomers as a function of
the grid number for a lamellar system composed of phase-separated ABA tri-
block copolymers with alternating glassy and rubbery phases determined using
the FD-SCFT algorithm, in comparison to the melt-like system determined
with the standard SCFT algorithm.

strain. Away from the interfaces, the stress decays rapidly,
which relates to the fact that the chain segments are oriented
at random in the bulk phases. In contrast, we observe that
the curve obtained for the same copolymer system under
melt conditions possesses a smooth behavior, as one should
expect for a melt. Only a minor stress concentration appears
in the interphase region, which is again due to the alignment
of the interphase segments in the direction of strain. However,
in contrast to the glass—rubber system, the interphase seg-
ments are now unconstrained. It is worth mentioning at this
stage that the stress concentration at the static glass—rubber in-
terfaces is a phenomenon one should expect from a physical
point a few. Since the seminal work of Griffith in the early
1920s [26], it is well known that in materials with failures
the stress is typically concentrated around the failure points.
Griffith recognized that, when a nominal stress is applied to
the external surface of a brittle material, the actual stress at
the flaw can be many times the value of the externally applied
stress and is typically amplified at the flaw’s corner. Moreover,
he found that the larger the flaw and the smaller its radius of
curvature, the greater the enhancement of the stress at the
flaw tip. In the same way, it has been inferred from fracture
mechanics experiments with multiphase materials that the lo-
cal stresses increase substantially near the interphase edges or
corners [8]. In case of our glass—rubber system, treated with
the FD-SCFT algorithm, the stress concentration takes place
at the edges of sharp and static glass—rubber interfaces, as
a consequence of the mechanical perturbation applied on the
system. As a simple solution to cope with the stress concentra-
tion at these critical locations, one might first think about mak-
ing use of a smoothing function. However, since the
singularities are also critical in real systems, it is clear to us
that with this procedure we would make our overall mechani-
cal properties dependent on the choice of the smoothing func-
tion. A better solution to the problem is to take into account
the fact that nature makes use of ingenious mechanisms, to re-
duce the sharpness of the interfaces and to avoid such high
stresses. In general, on the molecular scale the structural prop-
erties are influenced by dynamical processes, which are the re-
sult of the correlated motion of the polymer chains. In case of
our TPE system, this process might be a glass—rubber inter-
phase dynamics, which causes that the system at the interfaces
is in a transient state between melt and glass, leading to a softer
interface profile. It appears to us reasonable to assume that this
dynamical process can be described as a yielding process act-
ing on the nanoscale, in which the material does undergo
a transition from elastic to plastic deformation. The yielding
deformation of glassy polymers is known to be driven by
a thermally activated process and can conveniently be de-
scribed by the theory of absolute reactions rates from chemical
kinetics [20,27]. At the temperatures under consideration, this
process can be viewed as a thermally activated slip-shear
mechanism, considered to be the primary mechanism of plas-
tic deformation in case of glassy polymers [20]. In the slip
model of Zhu and Zhu [20], the slip-shear mechanism is
described as the motion of relative sliding of neighboring
monomers against the van-der-Waals (vdW) interactions. This
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picture has recently been confirmed experimentally by these
authors on the example of glassy poly(methyl-methacrylate)
(PMMA) [20] and by Swallowe and Lee for glassy PS [28].
Instead, at lower temperatures plastic deformation can also
occur via alternative mechanisms, like e.g. thermally activated
production of local molecular kinks [29] and/or the breaking
of vdW bonds [30]. However, it is worth considering that these
models are only phenomenological descriptions derived from
experimental observations. To develop an adequate simulation
procedure for the TPE materials under consideration, we need
to formulate a consistent theoretical model of the glassy state
within transition rates, which will provide us a theoretical
basis for our KMC algorithm and give us an idea about the
magnitude of the parameters, defining the thermally activated
process.

In a recent work [19] we formulated and investigated a new
glass theory, which could suitably reproduce the stress relaxa-
tion spectrum of TPEs, composed of phase-separated styrenic
block copolymers. More specifically, we demonstrated that the
crossover in the shift factors, observed experimentally to
change from Williams—Landel—Ferry (WLF) to Arrhenius be-
havior crossing a characteristic temperature T* and approach-
ing the glass-transition temperature of the crosslinks from
below, coincides with the crossover in behavior from power
law to stretched exponential of the stress relaxation spectrum,
found in recent tensile experiments [31]. We concluded from
this work that a rate-determining thermally activated process
determines the behavior of the glassy crosslinks in this
temperature range, involving thermally activated breaking and
re-forming of vdW bonds. We identified the characteristic
temperature T* to be identical with the second-order equilib-
rium transition temperature 7, of the glassy PS phases. By com-
bining a recently introduced theory for glasses of Di Marzio and
Yang [32] with the significant-structure theory of Eyring and
Ree [33], we developed a new glass theory, which is capable
to describe the glassy state within transition rates and explain
the characteristics of the mechanical behavior observed exper-
imentally in these kind of materials. In this work, we also con-
sider the thermally activated slip-shear motion via breaking
and re-forming of vdW bonds to be the primary mechanism
of deformation in the range of temperatures under investiga-
tion. This requires a more explicit consideration of the micro-
mechanical process associated with slip-shear motion. In our
view and in accordance with Zhu and Zhu [20], a glassy poly-
mer is the frozen state of an overcooled melt, which can spa-
tially be decomposed in elementary units containing polymer
chains, held together by transient vdW bonds [19]. In the fol-
lowing, we will refer to these elementary units as activation
units (AUs). In accordance with our recently proposed theory
for glasses, we make use of a trapping description for elemen-
tary motion, in which escapes from deep energy wells provide
the rate-determining steps. In Fig. 2 we show simplified
sketches of the configuration space of our glass model in dif-
ferent temperature ranges, accessible within a typical experi-
mental time frame. The points represent configurations of
AUs and the connecting lines represent allowed transitions be-
tween the configurations. Configuration points belonging to
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Fig. 2. Sketches of the underlying glass model at different temperature ranges.

the configurational sea of shallow energy wells are termed
N; and those belonging to the deep energy wells M;. The hor-
izontal lines with rates «; for traveling to the right and §;,, for
traveling to the left designate motions of the configuration
point among the configurational sea of shallow wells. The ver-
tical lines connect the configurational sea to the deep wells,
while the length of each vertical line is proportional to the po-
tential energy depth of the well. The rate of escape from the
deep wells is given by A; and the rate of capture by B,
When the configuration point is in a deep well, there is no mo-
tion. In Fig. 2(a) we show the configuration space of the glass-
forming material at a temperature somewhat above T,. In this
regime, there are only a few deep wells relative to the number
of shallow wells and the energy difference between them is
rather small. As a consequence, the configuration point mi-
grates rapidly from well to well within the configurational
sea of shallow wells, and the system is able to flow or rear-
range under the action of an external strain. In Fig. 2(b) the
material is in the Arrhenius regime, characterized by the range
of temperatures T, < T < T,. In this situation, a configurational
sea of shallow energy wells coexist with deep energy wells,
and it is assumed that the jumps out of the deep wells are
the rate-determining steps. Under these conditions, the mate-
rial is solid like, but flows very slowly under the application
of an external strain. If the configuration point is in one of
the deep wells, it jumps out of it after a long period of time
and wanders into the configurational sea of shallow wells,
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until it falls into another low-lying well. It then stays in this
well for another long period of time until it jumps out of it, re-
peating the process all over again. The rate-determining step in
this picture is a simple vitrification/devitrification process
without flow of matter, caused by the formation/breaking of
transient bonds. Motion involving flow of matter occurs only
when the configuration point has escaped and cruises around
in the configurational sea of shallow wells and persists there
until it falls into another low-lying well. In Fig. 2(c) we see
the material’s configuration space at 7,. At this temperature,
there is only one configuration remaining, which is infinitely
deep in energy, and, thus, the trajectory is trapped in the
deep well. In this regime, the material has no freedom to
rearrange and its viscosity diverges. Within this picture, the
glass-transition phenomenon can now be explained by the
appearance of non-equilibrium spatio-temporal fluctuations
in vicinity to the glass transition, which lead to variations in
the viscosity throughout the system and provoke the creation
of solid clusters in the polymer melt. At T, the system pos-
sesses the critical fraction of solid clusters with respect to
the fraction of the melt-like regions, so that the solid clusters
are able to connect to each other. This leads to the formation of
a continuous rigid backbone, causing a sudden increase in the
viscosity. In this situation, the system gets trapped in a quasi-
equilibrium state by undergoing a percolation transition. Ex-
perimental evidences for the spatial—temporal heterogeneities
in vicinity of T, for glass-forming polymeric liquids have been
accumulated over the past decade using experimental tech-
niques, such as NMR, fluorescence recovery, dielectric hole
burning or solvation dynamics [34].

Based on the glass model introduced previously, an algo-
rithm can be proposed for the simulation of the slip-shear pro-
cess, involved in the glassy crosslinks of styrenic TPE
materials in the range of temperatures T, <T < To(PS). It
can be summarized with the following two-step procedure:

1. An AU is selected in space and the vdW bonds, acting be-
tween the styrenic monomers within an AU, are coopera-
tively formed or broken through thermal activation,
depending on whether the AU is in a melt-like or solid
state in its original configuration. The thermally activated
process is efficiently mimicked via a KMC algorithm;

2. Under the action of strain on the AU, a subsequent step of
flow motion of the chains is incorporated into the algo-
rithm via minimization of the chain configuration within
the molten (rubbery) phase.

To implement this algorithm, we treat the chains on the
mesoscopic level of description using the FD-SCFT technique
and combine it with a KMC algorithm, which allows to calcu-
late the transition rates on the fly. Our procedure will be
described in the subsequent sections.

2.2. SCFT with frozen domains

As we discussed in Section 2.1, we consider that the glassy
state of an amorphous polymer can be described as the frozen

state of an overcooled melt, in which the monomers are essen-
tially trapped exhibiting a dynamical arrest. To mimic such
a behavior within SCFT, let us consider in the following our
TPE material, composed of phase-separated styrenic block co-
polymers. The partition function of this glass—rubber system
can be expressed as [25]

7- / a7 / ﬁba exp{ ! / dT’XﬁA(7’)ﬁB(7)}
X0 [(l - ’Y(?I)) (prubb _ﬁA _/ﬁB)] 0 [’Y(?l) (pA/glass _/ﬁA)]
X 5[7(?I)<pB/glass _/p\B)]v (1)

where po(7) = NS0, [ dso(7 — 7u(s)) and p(7) =
NY ffl dso(7 — 7 4(s)) are the monomer density opera-
tors for the A and B species, while fis the fraction of the poly-
mer chain composed of A monomers. The total monomer

density is po=nN/V, where N is the polymerization index,
n is the number of chains and V is the volume of the

system. The integration measure D7 o = D7, exp{—l /4R§0

fol ds(d7 4(s)/ds)’}, where [DT, denotes a path integral
over all possible conformations of the ath chain, represented
by the space curve 7 (s) and parameterized by the chain con-
tour variable s. Moreover, the quantity R, designates the radius
of gyration of the unperturbed chain. The step function 7(7)/)
is 1 for 7 in the glassy phase ., While it is 0 otherwise. To
mimic the dynamical arrest, we impose the following con-
straints pa(77) = pA/glass(7) and pp(7) = py /glass(7>) with
PaJatass(T) + PBJgtass(7') = Pytass ON the monomer densities
of the glassy phase, where p, /glass(7) and pp /g,aSS(T))
denote, respectively, the fixed values of the monomer densities
of species A and B in this phase. In the rubbery phase Q,,, we
impose the constrain pa(7°) 4 pg(7) = Pruby> Where prupp is
the total density of monomers in the system, pertaining to
the rubbery phase. Next, we convert the partition function
into a field-theoretic formulation by making use of the func-
tional integral identity 1 = [D[p]é[p —p] = [D[p]D[v] exp
{Jd7 (7)) [p(7) — B(7)]}, where »(7") is a field variable.
The partition function, then, results in

7= / a7’ / DpaDpgDwsDwgDpDuDve " (2)
with the free energy

6F = / A7 {py %0 (T ) () — iwa (7 )pa(T)

/

- PA(?))] - iv(?) [7(7 )(pB/glass(?) - PB(7))] }

—nan[iwA,in;N],

where
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[D7, exp{ - fg dsiNwa (7 o(s)) — ffl dsinB(TZ,(s))}

0= D7,

(4)

denotes the single chain partition function and 8 the inverse
temperature. The fields p(7”), u(7") and v(7") are responsible
to enforce the density constraints discussed previously. Next,
we perform the transformation w—iNw, p—iNp, u—iNu
and v—iNv and rewrite the modified free energy F = GBFN/
(pgV) in terms of the volume fractions ¢; = p;/po. Moreover,
we shift the free energy so that F — Fp =0 for w; =0, where
Fy is the free energy of the disordered phase. This provides
the following expression for the free energy per chain:

Foy / A7 N (A (T) = B0) (b0 (F) — o)
— WA(?)‘pA(?) —Ws (?> (?) _P(ﬁ
X (Prubb/ Po — ( ) — ( N —

X (¢A/glass( ) ¢A )] ( [’Y / (¢B/glass(7}>
- d)B(T)))] } —nln Q[lwA,le;N]

with

/D7 aexp{

0=

where ¢, and ¢y are the average volume fractions of the
A and B species, respectively. In the rubbery phase Q,,, we
update the chemical potential fields from relaxation step n to
n+ 1 in the following way:

wi — 56 oF =2 {WIA —ha— “ —p”]
by OBy XN
2 [cb]”; — G — w”AX;Vpn} ,

while in the glassy phase Q. the fields are updated as
follows:

witl i = 3 OF — 5 [ —fa— V”}
A oph, 5¢A A xN
n__ o (J‘)A —u"
Jr;{[ B o YN } s (8)
e 5 A,(f [ . w}
B 5¢B o’ YN
, Y _ wn _ un
10— da — .

with the relaxation parameters chosen such that A’ < A and
A > 0. The volume fractions ¢’y and ¢p are calculated via

— L — —
() :éfg dsq(7,5)q! (7,5),

— 1 1 — i (9)
(7)) :éff dsq(7,5)q' (7", 5),
where ¢(7,s) is a restricted chain partition function that
can be computed numerically as the solution to the modified
diffusion equation

0<s<f,
f<s<l1,

= 1
0s R2,V?q(7,s) — iNweq(T,s), (10)

dq {R2 WV2q(7,s) —iNwaq(T,s),
0

subjected to the initial condition ¢(7",0) = 1. The restricted
partition function ¢f(7”,s) may be calculated as the solution
to a modified diffusion equation similar to Eq. (10) with the
right-hand side multiplied by —1, subjected to the initial con-
dition ¢'(77,1) = 1 [35]. Having determined the restricted
chain partition function, the single chain partition function
can easily be obtained via

Q=Vv"! /d?’q(?, 1). (11)

It can easily be demonstrated that in the rubbery phase
Qb the value of the chemical potential fields at the saddle
point satisfy the following set of equations:

WA(Z:) = XN (s (Z)
we(77) = xN(pa(7)

whereas the pressure field obeys

p(7) = (wa(7) +ws (7)) /2 = XN/ 2- (13)
In contrast, in the glassy phase Qgy,s; at the saddle point the
chemical potential fields satisfy equations

WA(Z):XN(qu(z)_%B)"’M(Z)a (14)
w (1) = xN(Pa (1) — ¢pa) +v(77),
whereas the fields of the density constraints obey

M(_>> WA( ) XNd)B/glass( r )7
V<—>) WB( ) XN¢A/g]ass( )

The relaxation scheme for calculating the saddle point
values for the fields is given by the following steps:

- &B) +p(7)7
6 +p(T), (12)

(15)

1. Set the random initial values for w,, wg and p;

2. Solve the modified diffusion equations numerically to
calculate ¢(7”,s) and ¢ (7", s);

3. Substitute these functions into Eq. (9) to obtain ¢A, ¢g;

4. Use the chemical potential field expressions in Egs. (7)
and (8), to update the chemical potential fields at the nth
iteration, w", to their values at the (n + 1) iteration, w"*;

5. Update the pressure field in the rubbery phase Q. via
Eq. (13) and the fields of the density constraints of the
glassy phase Qg via Eq. (15).
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In order to determine the total density of rubbery monomers
in the system ¢, required in Eq. (13), we consider that the
overall system is incompressible. This means that an increase
of the total monomer density in the glassy phase is compen-
sated by a decrease of the total monomer density in the
rubbery phase upon deformation, without formation of micro-
voids. Such a mechanism has been established experimentally
by Michler et al. using nanoanalytical techniques based on
electron and atomic force microscopy [36]. To demonstrate
the procedure, let us consider the average volume fractions
of the A and B monomers contained in the overall system of
volume V

= 1 —\ = —\ =
ha = V[ngmss A (r)d T + erubb NG L
- 1

o =Pl ou $a (I Jo 80707,

(16)

where ¢, /B = PasB/Po- Summing both expressions, we get

= = 1 — —\1 =
¢A+¢B:V|:/Q [¢A(’")+¢B(")]d’"

4 / [6a(F) + ds(7)]dT | = 1. (17)

To introduce the hard-core repulsion between the mono-
mers in the rubbery phase, we assume that the total density
of monomers in the rubbery phase is locally constant, i.e.
$a(T) + ¢p(7) = Pupp in Quup- This implies

/Q [(ﬁA(T)) + (153(7))](1? = Vrubbérubb7 (18)

where Grupp = Pruby/Po and Vi is the volume of the rubbery
phase. Inserting Eq. (18) into Eq. (17), we obtain the average
volume fraction of the rubbery monomers in the system as

b= V= [ o7+ 00707 . (19)
rubb Qetass
The local volume fractions of the glassy monomers
d)A/g]aSS(?) and ¢g /glass(?), needed in Eq. (15), are obtained
preliminary to the simulation by using the values of the corre-
sponding melt-like system, calculated with the standard SCFT
approach [25].

2.3. Kinetic Monte Carlo algorithm

In a large class of systems the dynamic evolution is inher-
ently stochastic, and changes in the local configuration occur
concertedly in space and time. The kinetic Monte Carlo
KMC method is an extremely efficient method to carry out
dynamical simulations of such stochastic and/or thermally ac-
tivated processes, when the relevant micromechanical mecha-
nisms determining the dynamical evolution are known. KMC
simulations have successfully been used to model a variety
of dynamical processes, ranging from catalysis to thin film
growth [37—39]. The approach has also widely been employed
to simulate the deformation behavior of polymer systems [40].

To outline the basic principle of the KMC method, let us
consider a system containing N possible transition events,
among which each event i is associated with a rate r; [39], de-
termining the dynamics of barrier crossing on the potential en-
ergy surface. For this system a list of rates R = {ry, r5, ..., vy}
can be constituted and a particular configuration of the system
at a particular time can be characterized by the distribution of
the N events over the rates R. This distribution is constructed
by a MC algorithm, which selects randomly among various
possible events available at each time and effects the events
with appropriate transition probabilities W = {w, w», ..., wy}.
To ensure that a direct and unambiguous relationship
between Monte Carlo time and real time is established [39],
the transition probabilities must be constructed in such a way
that a dynamical hierarchy of transition rates is preserved
away from equilibrium. Generally stated, a dynamical hierarchy
of transition probabilities is created when a probability for a
transition { is defined as

T

= E s
max

where r; is the rate at which event i occurs and £, is a number
obeying the condition &,,,,x > sup{r;}. The creation of a dynam-
ical hierarchy of transition rates ensures that transition proba-
bilities are uniquely defined. For example, a dynamical
hierarchy is not achieved in case of the standard Metropolis al-
gorithm useful for systems near equilibrium, because all tran-
sitions of the system to lower or equivalent energy states are
considered to have a probability of unity [41]. Another impor-
tant requirement is that time increments upon successful
events should be calculated appropriately, i.e. time at each trial
i, at which an event is realized, should be updated with an
increment 7; selected from an exponential distribution,

1
Zi‘vzl"i

where £ is a uniform random number between 0 and 1. Finally,
if in addition the various events can be supposed to be inde-
pendent, then the MC algorithm simulates a Poisson process
[39], and the MC trajectory mimics real time dynamics. A
simple implementation, obeying the previous requirements,
is known as the Bortz—Kalos—Lebowitz (BKL) algorithm
[37] and can be summarized by the following steps:

(20)

w;

In (£), (21)

Ti= —

1. Set the time = 0;

2. Form a list of all the rates r; of all N possible transitions in
the system. Any transition j can only occur one time and is
carried out with a rate r;;

3. Calculate the cumulative functions R; = ZJ
1,...,N;

4. Get a uniform random number £ € [0, 1];

5. Pick an event i randomly and, then, let it occur with
a probability

i

_rjfori =

I
i:—l 22
=gt 22)
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by finding the i for which
Ri—I/RN <éEL Ri/RN; (23)

6. Carry out event i;

7. Recalculate all transition rates r;, which may have changed
due to the transition;

8. Get a new uniform random number £ € [0, 1];

9. Update the time via

t=t+T; (24)
where

In&
=% (25)

10. Return to step (1).

We point out that by defining the transition probabilities w;
according to Eq. (22) the dynamical hierarchy criterion is au-
tomatically satisfied [39]. Moreover, it is worth considering
from a mathematical point of view that the BKL algorithm
can be regarded as an algorithm that numerically solve the
Master equation

op(A,t)
o Z

}g

w = )p(X,1) - Z:W(A —)p(A1),  (26)

where A and X are successive states of the system, p(4, 7) is the
probability that the system is in state A at time ¢ and w(A'— 1)
is the probability per unit time that the system will undergo
a transition from state 1’ to state A. At a steady state (not nec-
essarily at equilibrium), the time derivative on the left-hand
side of Eq. (26) is zero and, consequently, the sum of all tran-
sitions into a particular state A become equal to the sum of all
transitions out of that state. To fulfill this condition, one must
require that the phenomenological model obeys the detailed
balance criterion

wd = )p(Ast = @) =w@=)p(4 t = @), (27)
in which
p(At=o0)=Z"e ", (28)

It is imposed to ensure that the MC transition probabilities
are chosen in such way that the system converges to the lim-
iting distribution p(4,t = %), consistent with the model Ham-
iltonian H(A) and the partition function Z of the system.
Summing over all states A’ in Eq. (27) and considering that
the total probability

> ow@ =) =1, (29)

we get [41]

> w = p( 1= o) =p(it=®). (30)

We see that, by imposing the conditions (27) and (29), we
achieve that the transition probabilities satisfy the eigenvalue
equation given in Eq. (30), characterizing a Markov chain
with a limiting distribution p(4, t = o). Now, in order to real-
ize detailed balance in a KMC algorithm, the transition prob-
abilities of the forward and backward thermally activated
process can be defined as follows:

w(A— ) e b
W(A/ — A) o e—ﬁ(AEﬂ)’ (3 1)

where AE = H(X) — H(X') is the energy difference between the
initial and final state A’ and A, while € and AE + € are the ac-
tivation barriers of the forward and backward process, respec-
tively. Finally, by inserting Eqgs. (31) and (28) into Eq. (27), we
can easily convince ourselves that the detailed balance crite-
rion is satisfied. Further, normalizing the transition probabili-
ties according to Eq. (29) guarantees that the Markov chain
converges to the limiting distribution p(4, t= ). To con-
clude, it is worth mentioning that the BKL algorithm can be
used to simulate a system in equilibrium as well as out of equi-
librium, as long as it fulfills the basic criteria given previously.
Moreover, because in the BKL algorithm the list of transition
probabilities are recalculated within every iteration step, the
simulation process can be modified at every iteration.

2.4. Combined KMC—SCFT algorithm

In the following we describe how to combine the SCFT and
KMC algorithm introduced previously, which will permit to
simulate the structural—dynamical model described in Section
2.1 on the chain level of description. Its basic steps are visual-
ized in Fig. 3. In the preliminary step we discretize the simu-
lation cell in AUs and determine the initial configuration of
frozen AUs in the system. This is achieved by minimizing
the free energy F of the copolymer melt and calculating its
initial phase-separated morphology using the standard SCFT
approach [25], providing initial fields and volume fractions of
the A and B monomers. The procedure delivers a fully relaxed
and unstrained morphology, and the phases designated as the
glassy phases can now be frozen by fixing their respective vol-
ume fractions locally. In a subsequent step an external strain
may be imposed and the partially frozen system is allowed
to relax to mechanical equilibrium by minimizing its free en-
ergy F, given by Eq. (5). From this new configuration, the local
stresses, fields and volume fractions on the grid are deter-
mined. Next, the KMC procedure is started by generating
the list of possible transition events, n =1, ..., N, for the given
configuration of AUs {A} with stress distribution {¢} and by
calculating the transition rate, r,, of each event n. This list
of events is constituted by the AUs that can either be in a vit-
rified or devitrified state. In our approach we allow only the
boundary AUs at the glass—rubber interfaces to contribute to
the configuration space. AUs of the melt phase are allowed
to undergo with a certain transition probability the vitrification
process, to become frozen AUs, while boundary AUs of the
glassy phase are allowed to melt with a certain probability.
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standard
SCFT

Calculate initial morphology
of copolymer melt

}

Freeze volume fractions +
define AU's

]

Apply external strain on
glass-rubber system

I

Minimize free energy + calculate
local stresses of glass-rubber system

l

Generate transition list of events +
calculate corresponding rates

l

Main Pick event randomly + execute it with
loop probability given by Eq. (32)

KMC-
FD-SCFT

|| Update time according to Eq. (33) ||

Calculate local and overall properties
+ check convergence

Fig. 3. Sketch showing the basic steps of the KMC—SCFT algorithm.

Having generated the transition list of possible events, an
event n is picked with probability

I'n

Zivzl Ti

The selected event is executed and time is advanced by

=) 33
Eflzl’”i (9)

Flow in the rubbery phase is allowed in a subsequent step
through minimization of the free energy, which permits the
rearrangement of the polymer chains. From this new configu-
ration, the local and overall properties are determined. It is
worth mentioning that equilibration through minimization is
performed after each KMC step, since molecular rearrange-
ments of the chains in the rubbery phase are much faster
than the yielding process occurring in the glassy phase. Fi-
nally, the convergence with respect to the local and overall
properties is checked.

In the following we define the basic properties of an AU
and derive an expression for the associated thermally activated
rate process. To define an AU, let us consider our TPE material
composed of phase-separated ABA triblock copolymers. First
of all, we determine the internal stresses with a standard SCFT
calculation and discretize the system, characterized by a het-
erogeneous stress distribution, in elementary units, in which
the stress is homogeneously distributed. By using the absolute
theory of reaction rates [27] and taking into account the tran-
sition probabilities in Eq. (31), we can express the forward and

backward transition rates of the thermally activated process
associated with an AU as

riU(7)=i‘§Uexp[—(AE ()= HFye <r>)]7 .
s 34

AU\ _ AU (AEAU(T))+UAU(?)UAU(7}))

V() =r; exp[— T ],

where 15" is the thermal vibration frequency of the AU and kg
the Boltzmann constant, while AEAU(77) and vAY(7) are the
activation internal energy and activation volume of the AU, re-
spectively. Let us consider in the following that the relaxation
of the glassy phase of the TPE material is so slow, while cool-
ing down from the melt during processing, that it is trapped
in a quasi-equilibrium state and it adopts a constant average
temperature T(t), which depends on time ¢. For further details
we refer to Section 2.1 of our manuscript and Section 2.2 of
Ref. [19]. Moreover, we assume that the system is thermalized
by a heat bath of temperature T and that T(t) =T, where we
take into account that the time scale of the relaxation of the
glassy phase is much larger than the time scale of the struc-
tural—dynamical process occurring at the interphases. The
activation energy associated with a thermally activated process
of an AU is, then, given by

AEAU(7>) = UPKE(T)(ﬁA(?)a (35)

where U is the height of the potential barrier for an individual
vdW bond, which needs to be broken in the cooperative pro-
cess in order to allow melting of the AU, and ¢4 is the volume
fraction of A monomers in our TPE material, responsible for
glass-formation. The density of kinetic entities pgg(7(7)),
i.e. vdW bonds, in a hypothetical glass, only composed of A

monomers, is given by our glass model as

~

(1) _ T
() =Ty) Nau(T—T,)

pxe(T) (36)

~i

 Nau(

where N,y is the number of activation units and 75 is the tem-
perature, at which the viscosity diverges and the material be-
comes fully rigid. Moreover, on the basis of transition state
theory [42], we interpret the activation volume of an AU,
vAY(77), as the difference in volumes of the activated and in-
activated state. Since an AU can only adopt solid- or melt-like
properties, we assume that the temperature dependence of the
activation volume of an AU can be neglected. In this context, it
is also worth considering that, to introduce temperature depen-
dence into the algorithm in a consistent way, we also need to
take into account the temperature dependence of the Flory—
Huggins y-parameter. This parameter is assumed to obey the
following functional form [43]:

Y
=—+¢, 37
XPo =1 (37)
where v and € are constants. For the PS—PI interactions in our

block copolymer system, we choose the coefficients in Eq.
(37) to be ¥y =496 Knm > and e =—0.595nm > [43]. It is
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worth emphasizing that the temperature dependence of the
x-parameter does not depend significantly on the method of
determination, but its absolute value via the coefficients does
[44]. In conclusion, we see that Egs. (35), (36) and (37) in
conjunction with Eq. (34) fully determine the time-dependent
evolution of the system as a function of temperature.

Other possible micromechanisms of deformation are related
to translation of entanglements and end points in space, like e.g.
chain slippage across an entanglement, chain disentanglement,
chain re-entanglement and chain scission. In our KMC—SCFT
approach we consider that the yielding deformation is unaf-
fected by the entanglement structure and, as a consequence, in
our algorithm we neglect related micromechanical processes.
This assumption is supported by the experimental work of
Miller [45], who found in his investigation of low-molecular
weight PS that the viscosity at the glass transition for samples
with a molecular weight M < 19300 = M. is independent of
the molecular weight and adopts a characteristic value of
log ng =13 £ 1. This clearly shows that entanglements play
no role in the viscosity of PS below M. and that in this regime
the viscosity is entirely determined by the vdW interactions be-
tween the monomers. However, when loading is carried beyond
the yielding region, the load generally needs to increase for ad-
ditional strain to occur. This effect is called strain hardening and
is associated with an increased resistance to slip deformation of
the entanglement structure of the polymer network [46]. In this
regime thermally activated chain slippage and disentanglement
processes need to be taken into account [12]. Another process,
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which can occur under heavy load conditions, is thermally acti-
vated chain scission of C—C bonds in the polymers [47]. Since
this process occurs only under heavy load conditions, this effect
is also neglected in our algorithm.

3. Results and discussion

We start our investigations by performing calculations with
our combined KMC—SCFT approach for the TPE material
considered in Section 2.1, where the FD-SCFT algorithm failed
to provide useful results. In the calculations we considered a
lamellar system composed of ABA triblock copolymers with
alternating glass—rubber phases, subjected to an extensional
strain of 8.3%. We used average volume fractions for the A
and B monomers of ¢ 43 = 0.5, a Flory—Huggins parameter
of x =0.2 and a polymerization index of N =100, as well as
a lattice spacing of dx=0.1 R,. In Fig. 4 we have visualized
the fluctuations of both glass—rubber interfaces as a function
of real time at four different temperatures below T(PS), i.e.
T=305K, 320K, 350K and 380K. From the graphs, we
deduce that the interfaces fluctuate about some equilibrium
average values at all temperatures and that the magnitude of
the fluctuations as well as the frequency of events within a time
interval grow with increasing temperature. The latter behavior
can easily be explained physically by the increase of the tran-
sition rates for the processes of breaking and forming of the
vdW bonds in the glassy phase as the kinetic energy in the sys-
tem becomes larger. Next, in Fig. 5 we show the 1000-point

time [r.u.]

0 5000 10000

interface location

25 T [ '

! N

1 | 1 | 1
0 2000 4000 6000 8000

time [r.u.]

-

interface location
= = v i o

Fig. 4. Glass—rubber interface locations versus real time at various temperatures for the TPE material composed of ABA triblock copolymers, determined with the
combined KMC—SCFT algorithm. In the calculations the following temperatures have been considered: 7= 305 K (upper left), T =320 K (upper right), T =350 K

(lower left) and T =380 K (lower right).
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Fig. 5. 1000-Point moving average of the interface locations versus rescaled
real time at various temperatures for the TPE material composed of ABA
triblock copolymers, determined with the combined KMC—SCFT algorithm.

moving average of the interface location versus the rescaled
real time at various temperatures. For a better visualization,
we rescaled the time of the curves according to the following
equation ¢ = A(T)t, where ¢ represents the rescaled time and
A(T) the scaling factor. The scaling factors are A(T =
307K)=32, A(T'=310K)=135, A(T=320K)=375,
A(T =330 K) =480, A(T =350 K) = 665. We recognize that
with increasing temperature the fluctuations become stronger
and the glassy phase between both interfaces becomes nar-
rower. This is due to the fact that the glassy phase melts succes-
sively due to the gradual change of the composition profile,
which is associated with the gradual change of the glass-transi-
tion temperature. These results are in consistency with a series
of experimental investigations from the late 1960s and early
1970s [48], from which it has been inferred that with increasing
temperature the PS crosslinks in styrenic TPEs become softer.
In these works a higher ductility of the PS glassy phase was re-
ported at lower temperatures, than predictable from the values
of the bulk material. In a subsequent study Morese-Séguéla et
al. [14] demonstrated, using DSC and 13C NMR-line-width
spectroscopy, that at the interphases of nanophase-separated
low-molecular weight PS—PI diblock copolymers the glass-
transition temperature changes gradually with the composition
gradient. They assumed this behavior to be the result of strong
dynamical interactions, taking place between the polymer
chains in the soft and hard nanophases [15]. Their experimental
findings have recently been confirmed by experimental investi-
gations of Park et al. [49] on thin random copolymer films, who
provided further evidences for the thickness and composition
dependence of the glass-transition temperature of the hard
nanophases. Note that, for demonstration purposes, we chose
in our calculations, analogously as Morese-Séguéla et al. in
their experimental work, a low-molecular weight block copol-
ymer with a large interphase region. Commercially used block
copolymer materials, however, generally have a higher molec-
ular weight and, thus, possess a very small interphase region,
which is often hard to be detected. Next, we deduce from the
figure that, approaching the glass-transition temperature of
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the crosslinks from below, there is an increased probability
that the crosslinks melt for a short period of time, as a result
of fluctuations. We can particularly well infer this from the
curves, representing both interfaces, at a temperature of
T=350K. In the time interval between # =1 x 10° and
2 x 10°%, we see that the curves do almost touch each other,
and we can safely predict that, if we would run the simulation
for a longer time, instantaneous melting due to fluctuations
would be very likely to occur. In the following we will call
such a phenomenon fluctuational melting and emphasize that
it has important consequences for the mechanical properties
of these materials. This is due to the fact that, during the small
time frame the crosslinks are in the molten state, the chains can
partially or fully pull out of the crosslinks under the action of
strain and in this way relax their stress. In contrast, at a temper-
ature of T = 305 K, we see that the interface curves are far apart
and fluctuate only slightly. In this situation it is very improba-
ble that they will coincide over some time interval and that fluc-
tuational melting can take place, even in a simulation run of
infinite time. As a consequence, at this temperature the glassy
crosslinks remain rigid, and the material does not flow under
the action of strain on an accessible time scale. It is also worth
noting in this context that the process of chain pullout has been
suggested by Hotta et al. [31], to explain the viscoelastic and
stress relaxation behavior of these materials, observed in
their mechanical experiments in the range of temperatures
T, <T <T,(PS). Its crucial role has recently been confirmed
in a theoretical work of Baeurle et al. [10], who provided a the-
oretical foundation to their experimental results. Note that due
to the restriction in computational time, we could not explicitly
show such an instantaneous melting event here, but we plan to
do extensive investigations on this phenomenon in a subsequent
work. In the Figs. 6—8 we show the resulting time-averaged in-
ternal stress and volume fractions of the A and B monomers as
a function of the grid number at three different temperatures,
ie. T=305K, 320K and 350 K. We compare the curves ob-
tained with increasing time to the static internal stress config-
uration obtained at r=0. For a better visualization, we
rescaled the static stress curve using ¢’ = g/2. We recognize
that the stress profile at T = 305 K still possesses a strong stress
concentration at the interphases, even if the stress peaks are al-
ready significantly reduced compared to the static internal
stress profile at t =0, where no interphase dynamics is taken
into account. By comparing the time-averaged stress profile at
this temperature with the corresponding curves at higher tem-
peratures in the subsequent graphs, we see that the stress peaks
significantly decrease in magnitude with increasing tempera-
ture and that the double peaks at each interphase are replaced
by single peaks. We also notice by considering the stress
profiles at different times and temperatures that the interphase
dynamics causes a smoothing of the internal stress profile with
increasing time and approaching the glass-transition tempera-
ture of the glassy phase, which relates to the partial cancella-
tion of the sharp and static internal stress configurations. At
T =350 K the importance of the interphase dynamics becomes
most apparent. The stress profile becomes almost similar in
shape to the stress profile of the melt-like system computed
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Fig. 6. Time-averaged internal stress as a function of the grid number for
the TPE material composed of ABA triblock copolymers at 7= 305 K, deter-
mined with the KMC—SCFT algorithm.

with the standard SCFT approach [25] and shown in Fig. 1. In
this context, it is also worth considering that the standard SCFT
approach does only take into account the transient vdW bonds
acting in the glassy PS phase in a mean-field sense, whereas the
KMC—SCFT approach introduces higher-order bond fluctua-
tions. Moreover, it is important to point out that our calculation
results are validated through several theoretical and experimen-
tal investigations. The implausibility of sharp interfaces at such
small scales together with the presence of regions with mixed
monomeric composition [50], motivated Leary and Williams
to introduce the thick-interface concept, to model these sys-
tems [51]. In a later work Diamant et al. [8] deduced from their
tensile tests on TPE samples that a linear or nonlinear mechan-
ical perturbation provides a stress concentration, localized in
the interfacial region between hard and soft nanophases. More-
over, they found that the change of various interphase charac-
teristics with the monomeric composition has a significant
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Fig. 7. Time-averaged internal stress as a function of the grid number for the
TPE material composed of ABA triblock copolymers at 7=320K, deter-
mined with the KMC—SCFT algorithm.
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Fig. 8. Time-averaged internal stress as a function of the grid number for the
TPE material composed of ABA triblock copolymers at T=350K, deter-
mined with the KMC—SCFT algorithm.

effect on the local and macroscopic properties of these mate-
rials. In a subsequent work Diamant and Williams [52] ex-
plained the temperature dependence of the recovery behavior
of TPE materials, subjected to a large nonlinear deformation,
with the gradual change of the degree of vitrification with mo-
nomeric composition. Finally, Huy et al. [17] concluded from
their experiments with different tapered block copolymer sys-
tems that a gradual composition profile permits a more uniform
distribution of the stress at the interphases, and in this way the
interphases can be tuned to act as efficient stress absorbers, re-
ducing the extent of the stress transfer between the nanophases.

4. Conclusions

In this work we have presented a new multiscale modeling
method, which combines the self-consistent field theory ap-
proach with the kinetic Monte Carlo method, and demonstrate
that it is useful to simulate thermoplastic elastomers composed
of triblock copolymers, which are characterized by alternating
hard glassy and soft rubbery phases. In our investigation we
show that on the molecular scale sharp and static glass—rubber
interfaces, which experience extreme stress concentrations, are
unrealistic. Moreover, we demonstrate that on this small
length scale the structural properties are coupled to a chain-
dynamical process, which reduces the interfacial stresses and
generates a soft boundary at the interphases. In case of the
styrenic block copolymer systems under investigation, we
identify this process to be a thermally activated yielding pro-
cess, acting in the glassy phase. In our work we demonstrate
that our new methodology is capable to simulate this structur-
al—dynamical process adequately. To show this, we apply the
new methodology to a thermoplastic elastomer composed of
nanophase-separated ABA triblock copolymers, and calculate
its time-averaged composition and internal stress profile. We
find that the structural—dynamical process generates inter-
phases, where the degree of vitrification and the stress profile
vary as a function of the monomeric composition. Moreover,
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we observe that, approaching the glass-transition temperature
of the glassy phase, the increasing interphase fluctuations
cause an effective smoothing of the internal stress profile,
due to the partial cancellation of the sharp and static internal
stress configurations. At temperatures in vicinity of the
glass-transition temperature, the interphase dynamics pro-
duces a stress profile similar to the one of the melt-like system.
From these results, we conclude that a suitable treatment of
the interphase dynamics and morphology is crucial in model-
ing these materials. Finally, our investigation also provides an
explanation and confirms the importance of the chain-pullout
mechanism, as a result of fluctuational melting, in the visco-
elastic and stress relaxation behavior of these materials. There-
fore, our future work will be devoted to the investigation of the
influence of the chain-pullout mechanism and fluctuational
melting on their mechanical behavior. Moreover, additional
work will concentrate on the study of the effects of the inter-
phase dynamics on the stress transfer between the core
nanophases.
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Appendix A. Physical picture of the glassy state
within the SCFT approach

According to the Gaussian-thread model, flexible polymer
chains can be represented as threads of coarse grained, spher-
ical beads (monomers), connected by harmonic springs [25].
Despite its simplicity, the statistical mechanics required to pre-
dict the equilibrium behavior of this model is still compli-
cated, due to the correlations associated with the interacting
beads. To cope with this many-body problem, the SCFT
formalism re-casts the partition function in field-theoretic
formulation and re-interprets the interactions in terms of field
operators. The chemical potential fields of the A and B
monomers, defined as [43]

Ta(F) = NG (7) +5(7).
a(7) = XNGA (F) + (7). (38)

represent the total interactions experienced by the A and B
monomers at position 7 in space, whereas aA(?) and
53(7) denote their respective volume fractions. In both cases
the first term represents the attractive portion of the molecular
interactions, while the second represents the repulsive hard-
core part. The attractive (cohesive) inter-monomer interactions
cause that in the block copolymer system there is a preference
for similar A—A and B—B contacts over dissimilar A—B con-
tacts. Therefore, they are responsible for the phenomenon of
phase separation in the block copolymer system [7]. In con-
trast, the repulsive hard-core interactions are introduced by

imposing the incompressibility constraint and, as a conse-
quence, p(7) must be considered as the Lagrange-multiplier
enforcing it [43]. Having defined the interactions involved in
the system, we are prevented from solving the many-body
problem by the fact that the fields fluctuate, due to the corre-
lated motion of the monomers. In SCFT one copes with the
problem by invoking the mean-field approximation, which
permits to replace the field operators in Eq. (38) by their re-
spective ensemble averages. From the resulting equations,
we deduce that, by imposing our constraints, the average force
field acting between the monomers is frozen and kept fix under
deformation in a mean-field sense, which approximately re-
produces the physical picture of a glass. Finally, we point
out that, up to moderate strains, the frozen average force field
is sufficiently strong, to maintain the chains fixed in the glassy
region, as long as the local incompressibility constrain is
relaxed accordingly.

References

[1] Hawker CJ, Bosman AW, Harth E. Chem Rev 2001;101:3661—88.

[2] Matyjaszewski K, Xia J. Chem Rev 2001;101:2921—90.

[3] Kaminsky W, Tran PD, Weingarten U. Macromol Symp 2003;193:1—11;
Kaminsky W, Albers I, Vathauer M. Des Monomers Polym 2002;5:
155—62; Kaminsky W. Macromol Symp 2001;174:269—76.

[4] Moad G, Mayadunne RTA, Rizzardo E, Skidmore M, Thang SH. Macro-
mol Symp 2003;192:1—12.

[5] Baeurle SA, Fredrickson GH, Gusev AA. Macromolecules 2004;37:
5784—91; Baeurle SA, Martonak R, Parrinello M. J Chem Phys 2002;
117:3027—39; Baeurle SA. Phys Rev Lett 2002;89:080602-1—4;
Baeurle SA. J Comput Phys 2003;184:540—58; Baeurle SA. Comput
Phys Commun 2003;154:111—20; Baeurle SA. Comput Phys Commun
2004;157:201—6; Baeurle SA, Efimov GV, Nogovitsin EA. J Chem
Phys 2006;124:224110-1—8; Baeurle SA, Efimov GV, Nogovitsin EA.
Europhys Lett 2006;75:378—84.

[6] Gusev AA. Macromolecules 2001;34:3081—93; Gusev AA. J Mech Phys
Solids 1997;45:1449—54.

[7] Fredrickson GH, Ganesan V, Drolet F. Macromolecules 2002;35:16—39.

[8] Diamant J, Williams MC, Soane DS. Polym Eng Sci 1988;28:207—20.

[9] Holden G, Bishop ET, Legge R. J Polym Sci Part C 1969;26:37—57.

[10] Baeurle SA, Hotta A, Gusev AA. Polymer 2005;46:4344—54.

[11] Pukanszky B. Eur Polym J 2005;41:645—62.

[12] Sperling LH. Introduction to physical polymer science. New York:
Wiley; 2001.

[13] Henderson CP, Williams MC. Polymer 1985;26:2021—5; Henderson CP,
Williams MC. Polymer 1985;26:2026—38.

[14] Morese-Séguéla B, St-Jacques M, Renaud JM, Prud’homme J. Macro-
molecules 1980;13:100—6.

[15] Kraus G, Rollmann KW. J Polym Sci Polym Phys Ed 1976;14:1133—48;
Kumler PL, Keinath SE, Boyer RF. Polym Eng Sci 1977;17:613—21.

[16] Stoppelmann G, Gronski W, Blume A. Polymer 1990;31:1838—53.

[17] Huy TA, Hai LH, Adhikari R, Weidisch R, Michler GH, Knoll K.
Polymer 2003;44:1237—45.

[18] Spontak RJ, Patel NP. Curr Opin Colloid Interface Sci 2000;5:334—41.

[19] Baeurle SA, Hotta A, Gusev AA. Polymer 2006;47:6243—53.

[20] Zhu XX, Zhu GR. Polymer 1992;33:4968—76.

[21] Lawlor A, Reagan D, McCullagh GD, De Gregorio P, Tartaglia P,
Dawson KA. Phys Rev Lett 2002;89:245503-1—4; Lawlor A, De
Gregorio P, Dawson KA. J Phys Condens Matter 2004;16:S4841—8.

[22] Barrat JL, Fredrickson GH, Sides SW. J Phys Chem 2005;109:6694—700.

[23] Note that the stress is made dimensionless by dividing through a factor
accounting for the total number of chains n(/V, where n is the number
of chains, ( is the inverse temperature and V is the volume of the system
[22].



S.A. Baeurle et al. | Polymer 47 (2006) 8604—8617 8617

[24] Doi M, Edwards SF. The theory of polymer dynamics. New York:
Oxford; 1986.

[25] Sides SW, Fredrickson GH. Polymer 2003;44:5859—66.

[26] Griffith AA. Philos Trans R Soc London 1921;A221:163—98.

[27] Krausz AS, Eyring H. Deformation kinetics. New York: John Wiley &
Sons; 1975; Roylance DK. Characterization of polymer deformation
and fracture. In: Brame EG, editor. Applications of polymer spectros-
copy. New York: Academic; 1978. p. 207—19.

[28] Swallowe GM, Lee SF. J Phys IV France 2003;110:33—8.

[29] Argon AS. Philos Mag 1973;28:839—65.

[30] Brown N. J Mater Sci 1983;18:2241—54.

[31] Hotta A, Clarke SM, Terentjev EM. Macromolecules 2002;35:271—7.

[32] Di Marzio EA, Yang AJM. J Res Natl Inst Stand Technol 1997;102:
135-57.

[33] Eyring H, Ree T. Proc Natl Acad Sci USA 1961;47:526—37; Hsu CC,
Eyring H. Proc Natl Acad Sci USA 1972;69:1342—5.

[34] Cicerone MT, Blackburn FR, Ediger MD. Macromolecules 1995;28:
8224—32; Merabia S, Sotta P, Long D. Eur Phys J E 2004;15:
189—-210.

[35] Matsen MW, Schick M. Phys Rev Lett 1994;72:2660—3.

[36] Michler GH, Adhikari R, Henning S. J Mater Sci 2004;39:3281—92.

[37] Bortz AB, Kalos MH, Lebowitz JL. J Comput Phys 1975;17:10—S8.

[38] Gilmer GH. J Cryst Growth 1976;36:15—28; Voter AF. Phys Rev B
1986;34:6819—29; Blue JL, Beichl I, Sullivan F. Phys Rev E 1995;
51:R867—8; Block M, Kunert R, Scholl E, Boeck T, Teuber Th.
New J Phys 2004;6:166-1—12; Gusev AA, Suter UW. J Chem Phys
1993;99:2228—34; Gusev AA, Arizzi S, Suter UW, Moll DJ. J Chem
Phys 1993;99:2221—7.

[39] Fichthorn KA, Weinberg WH. J Chem Phys 1991;95:1090—6.

[40] Termonia Y, Meakin P, Smith P. Macromolecules 1985;18:2246—52;
Termonia Y, Meakin P, Smith P. Macromolecules 1986;19:154—9;
Termonia Y, Smith P. Macromolecules 1987;20:835—8; Termonia Y,
Smith P. Macromolecules 1988;21:2184—9; Terzis AF, Theodorou DN,
Stroeks A. Macromolecules 2002;35:508—21; Terzis AF. J Phys Conf
Ser 2005;10:171—4.

[41] Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford:
Clarendon; 1996.

[42] Solunov CA. J Phys Condens Matter 2002;14:7297—309.

[43] Matsen MW. J Phys Condens Matter 2002;14:R21—47.

[44] Rudolf B. Macromol Chem Phys 1995;196:4057—68.

[45] Miller AA. J Polym Sci Part A2 1968;6:1161—75.

[46] van Melick HGH, Govaert LE, Meijer HEH. Polymer 2003;44:
2493—502.

[47] Zhurkov SN. Int J Fract Mech 1965;1:311—23.

[48] Beecher JF, Marker L, Bradford RD, Aggarwal SL. J Polym Sci Part C
1969;26:117—34; Smith TL. Time-dependent mechanical properties of
elastomeric block polymers in large tensile deformations. In:
Aggarwal SL, editor. Block polymers. New York: Plenum; 1970. p.
137—51; Robinson RA, White EFT. Mechanical properties of styrene—
isoprene block copolymers. In: Aggarwal SL, editor. Block polymers.
New York: Plenum; 1970. p. 123—-36.

[49] Park CH, Kim JH, Ree M, Sohn BH, Jung JC, Zin WC. Polymer 2004;
45:4507—13.

[50] Shen M, Cirlin EH, Kaelble DH. J Polym Sci Polym Lett Ed 1970;8:
149-53.

[51] Leary DF, Williams MC. J Polym Sci Polym Lett Ed 1970;8:335—40;
Helfand E, Wassermann ZR. Polym Eng Sci 1977;17:582—6.

[52] Diamant J, Williams MC. Polym Eng Sci 1989;29:227—34.



	A new multiscale modeling approach for the prediction of mechanical properties of polymer-based nanomaterials
	Introduction
	Method
	Structural-dynamical model
	SCFT with frozen domains
	Kinetic Monte Carlo algorithm
	Combined KMC-SCFT algorithm

	Results and discussion
	Conclusions
	Physical picture of the glassy state 
	References


